



# Euclidian Norm, Euclidian Distance, & Angle

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee [rabiee@sharif.edu](mailto:rabiee@sharif.edu)

Maryam Ramezani [maryam.ramezani@sharif.edu](mailto:maryam.ramezani@sharif.edu)



# Table of contents

01

Introduction

02

Inequalities

03

Euclidean Norm

04

05

Angle

Euclidean Metric  
(Distance)

# 01

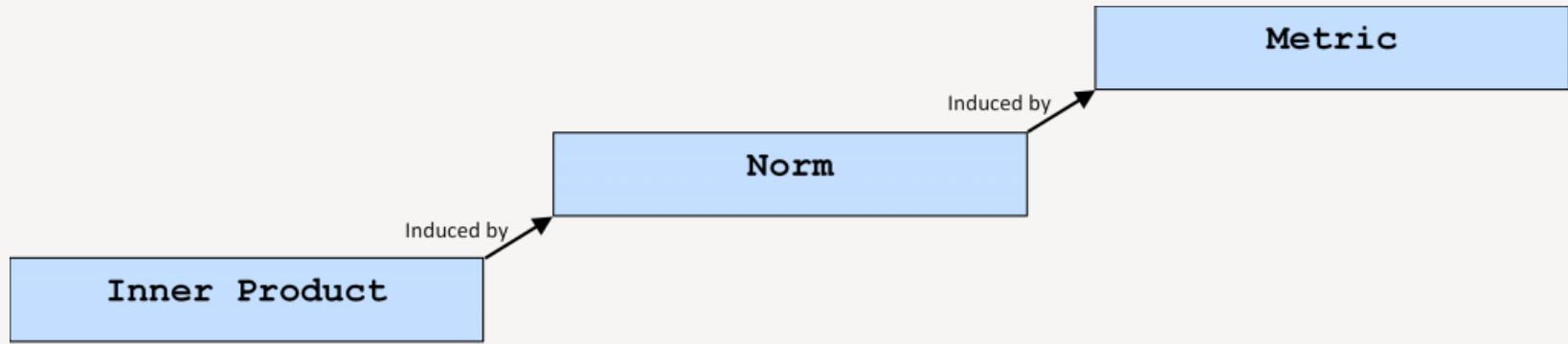
## Introduction



# The reason to use norms

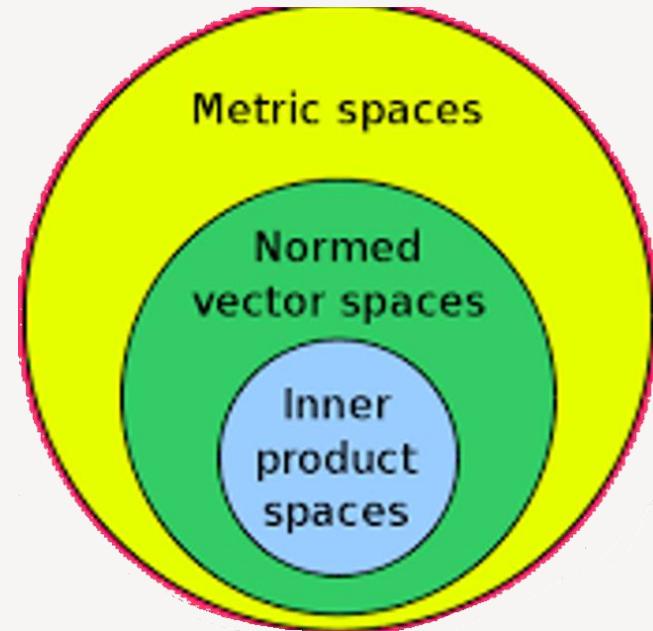
- ❑ Machine learning uses vectors, matrices, and tensors as the basic units of representation
- ❑ Two reasons to use norms:
  - To estimate how **big** a vector/matrix/tensor is
    - How big is the difference between two tensors is
  - To estimate how **close** one tensor is to another
    - How close is one image to another

# Inner Products, Norms and Metrics



# Inner Products, Norms and Metrics

- Given an inner product  $\langle A, B \rangle$ , one can obtain a norm doing  $\|A\|^2 = \langle A, A \rangle$
- And given a norm  $\|A\|$ , one can obtain a metric using the difference vector  $\|A - B\|$



# Inner Products, Norms and Metrics

| Vector space   | Generalization      |
|----------------|---------------------|
| metric         | metric space        |
| norm           | normed              |
| scalar product | inner product space |

# Euclidean Norm

## Definition

Functions closely related to inner products are so-called norms. Norms are specific functions that can be interpreted as a distance function between a vector and the origin.

## Definition

For  $v \in V$ , we define the eculidean norm of  $v$ , denoted  $\|v\|$ , by:

$$\|v\| = \sqrt{v \cdot v}$$

# Euclidean Norm

## Note

- Euclidean Norm (2-norm,  $l_2$  norm, length)

$$\|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- A vector whose length is 1 is called a **unit vector**
- **Normalizing:** divide a non-zero vector by its length which is a unit vector in the same direction of original vector
- It is a nonnegative scalar
- In  $\mathbb{R}^2$  follows from the Pythagorean Theorem.
- What about  $\mathbb{R}^3$ ?
- What is the shape of  $\|x\|_2 = 1$ ?

# Euclidean Norm

## Example

Norm of  $P_n(x)$  in the term of inner product  $\langle p_n(x), q_n(x) \rangle = \int_0^1 p_n(x)q_n(x)dx$ :

$$\|P_n(x)\| = \sqrt{\int_0^1 P_n^2(x)dx}$$

# 02

# Inequalities



# Chebyshev Inequality

## Theorem 1

Suppose that  $k$  of the numbers  $|x_1|, |x_2|, \dots, |x_n|$  are  $\geq a$  then  $k$  of the numbers  $x_1^2, x_2^2, \dots, x_n^2$  are  $\geq a^2$

So  $\|x\|^2 = x_1^2 + x_2^2 + \dots + x_n^2 \geq ka^2$  so we have  $k \leq \frac{\|x\|^2}{a^2}$

Number of  $x_i$  with  $|x_i| \geq a$  is no more than  $\frac{\|x\|^2}{a^2}$

## Question

- What happens when  $\frac{\|x\|^2}{a^2} \geq n$  ?
- No entry of a vector can be larger in magnitude than the norm of the vector. (why?)

# Answers

- When  $\frac{\|x\|^2}{a^2} \geq n$  :

The bound  $k \leq \frac{\|x\|^2}{a^2}$  becomes **non-informative**, because we already know  $k \leq n$ .



- Why no entry can exceed the norm ( $|x_i| \leq \|x\|_2$ ):

Since  $\|x\|_2^2 = \sum_{j=1}^n x_j^2 \geq x_i^2$ , taking square roots gives  $\|x\|_2 \geq |x_i|$ .



# Cauchy-Schwartz Inequality

## Theorem 2

For two n-vectors  $a$  and  $b$ ,  $|a^T b| \leq \|a\| \|b\|$

Written out:

$$|a_1b_1 + \dots + a_nb_n| \leq (a_1^2 + \dots + a_n^2)^{\frac{1}{2}} (b_1^2 + \dots + b_n^2)^{\frac{1}{2}}$$
$$(\sum_{i=1}^n x_i y_i) \leq (\sum_{i=1}^n x_i^2) (\sum_{i=1}^n y_i^2)$$

# Cauchy-Schwartz Inequality - Proof

It is clearly true if either  $a$  or  $b$  is 0.

So, assume  $\alpha = \|a\|$  and  $\beta = \|b\|$  are non-zero

We have

$$\begin{aligned} 0 &\leq \|\beta a - \alpha b\|^2 \\ &= \|\beta a\|^2 - 2(\beta a)^T(\alpha b) + \|\alpha b\|^2 \\ &= \beta^2\|a\|^2 - 2\beta\alpha(a^T b) + \alpha^2\|b\|^2 \\ &= 2\|a\|^2\|b\|^2 - 2\|a\|\|b\|(a^T b) \end{aligned}$$

Divide by  $2\|a\|\|b\|$  to get  $a^T b \leq \|a\|\|b\|$

Apply to  $-a, b$  to get other half of Cauchy-Schwartz inequality.

**Cauchy-Schwarz inequality holds with equality when one of the vectors is a multiple of the other**  
**If and only if  $a$  and  $b$  are linear dependent**

# Triangle Inequality

## Theorem 3

Consider a triangle in two or three dimensions:

$$\|x + y\| \leq \|x\| + \|y\|$$



Verification of triangle inequality:

$$\begin{aligned}\|x + y\|^2 &= \|x\|^2 + \|y\|^2 + 2 \cancel{x^T y} \\ &\leq \|x\|^2 + \|y\|^2 + 2 \|x\| \|y\| \\ &= (\|x\| + \|y\|)^2 \\ \Rightarrow \|x + y\| &\leq \|x\| + \|y\|\end{aligned}$$

Cauchy-Schwartz Inequality

03

# Euclidean Norm



# Vector Norm Properties

## Important Properties

1. Absolute Homogeneity / Linearity:

$$\|\alpha x\| = |\alpha| \|x\|$$

2. Subadditivity / Triangle Inequality:

$$\|x + y\| \leq \|x\| + \|y\|$$

3. Positive definiteness / Point separating:

*if  $\|x\| = 0$  then  $x = 0$*

*(from 1 & 3): For every  $x$ ,  $\|x\| = 0$  iff  $x$*

$= 0$

4. Non-negativity:

$$\|x\| \geq 0$$

# Norm of sum

## Theorem 4

If  $x$  and  $y$  are vectors:

$$\|x + y\| = \sqrt{\|x\|^2 + 2x^T y + \|y\|^2}$$

Proof:

$$\begin{aligned}\|x + y\|^2 &= (x + y)^T(x + y) \\ &= x^T x + x^T y + y^T x + y^T y \\ &= \|x\|^2 + 2x^T y + \|y\|^2\end{aligned}$$

# Inner product and norm

## Theorem 5

Take any inner product  $\langle \cdot, \cdot \rangle$  and define  $f(x) = \sqrt{\langle x, x \rangle}$ . Then  $f$  is a norm.

### Note

Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

# Proof

- Positive definiteness

Inner product properties give:

$$\langle x, x \rangle \geq 0 \text{ for all } x, \text{ so } f(x) = \sqrt{\langle x, x \rangle} \geq 0.$$

$$\langle x, x \rangle = 0 \text{ iff } x = 0.$$

$$\text{Hence } f(x) = 0 \Leftrightarrow x = 0.$$

- Homogeneity (absolute scalability)

For any scalar  $\alpha$ ,

$$f(\alpha x) = \sqrt{\langle \alpha x, \alpha x \rangle} = \sqrt{\alpha \bar{\alpha} \langle x, x \rangle} = \sqrt{|\alpha|^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle} = |\alpha| f(x).$$

(For real spaces,  $\alpha \bar{\alpha} = \alpha^2$ .)

# Proof (cont')

- **Triangle inequality**

Use Cauchy–Schwarz:

$$|\langle x, y \rangle| \leq f(x) f(y).$$

Now expand:

$$f(x+y)^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle$$

In real spaces,  $\langle y, x \rangle = \langle x, y \rangle$ , so

$$\begin{aligned} f(x+y)^2 &= f(x)^2 + f(y)^2 + 2\langle x, y \rangle \leq f(x)^2 + f(y)^2 + 2|\langle x, y \rangle| \\ &\leq f(x)^2 + f(y)^2 + 2f(x)f(y) = (f(x) + f(y))^2 \end{aligned}$$

Taking square roots (both sides  $\geq 0$ ):

$$f(x+y) \leq f(x) + f(y).$$

- All three norm axioms hold, so  $f$  is a norm.  $\square$

# Norm of block vectors

## Note

Suppose  $a, b, c$  are vectors:

$$\left\| \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\|^2 = a^T a + b^T b + c^T c = \|a\|^2 + \|b\|^2 + \|c\|^2$$

So, we have

$$\left\| \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\| = \sqrt{\|a\|^2 + \|b\|^2 + \|c\|^2} = \left\| \begin{bmatrix} \|a\| \\ \|b\| \\ \|c\| \end{bmatrix} \right\|$$

(Parse RHS very carefully!)

The norm of a stacked vector is the norm of the vector formed from the norms of sub-vectors.

04

# Euclidean Metric (Distance)



# Metric Properties

## Important Properties

Let  $V$  be a real vector space over  $\mathbb{R}$ . A function  $V \times V \rightarrow \mathbb{R}$  is called **metric** or **distance function** on  $V$ , and  $(V, R)$  a metric space, if for all  $u, v, w \in V$  the following holds true:

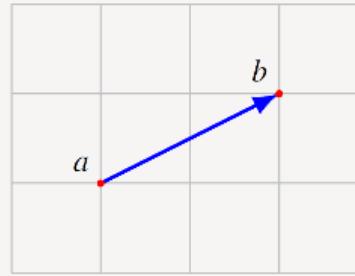
(i)  $d(v, w) \geq 0$  and  $d(v, w) = 0$  if and only if  $v = w$ ;

(ii)  $d(v, w) = d(v, w)$ ;

(iii)  $d(v, w) \leq d(v, u) + d(u, w)$ .

# Euclidean Distance

- Distance between two n-vectors shows the vectors are “close” or “nearby” or “far”.



- Distance:

$$dist(a, b) = ||a - b||$$

# Comparing Norm and Distance

Norm

(Normed Linear Space)

- 1.  $\|x - y\| \geq 0$
- 2.  $\|x - y\| = 0 \Rightarrow x = y$
- 3.  $\|\lambda(x - y)\| = |\lambda| \|x - y\|$

Distance Function

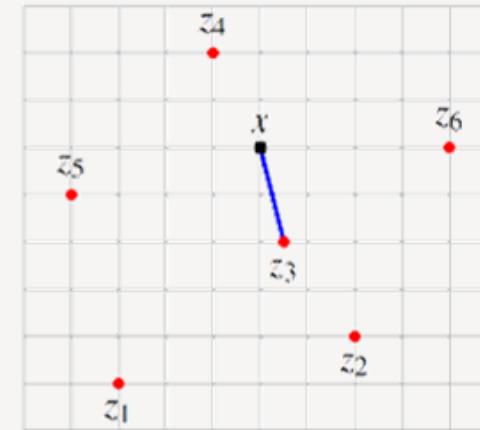
(Metric Space)

- 1.  $dist(x, y) \geq 0$
- 2.  $dist(x, y) = 0 \Rightarrow x = y$
- 3.  $dist(x, y) = dist(y, x)$

# ML Application

## Feature Distance and Nearest Neighbors:

- if  $x, y$  are feature vectors for two entities,  $\|x - y\|$  is the feature distance
- if  $z_1, z_2, \dots, z_m$  is a list of vectors,  $z_j$  is the nearest neighbor of  $x$  if:
- $\|x - z_j\| \leq \|x - z_i\|, \quad i = 1, 2, \dots, m$



# 05

# Angle



# Angle

## Definition

Angle between two non-zero vectors  $a, b$  is defined as:

$$\angle(a, b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

$\angle(a, b)$  is the number in  $[0, \pi]$  that satisfies:

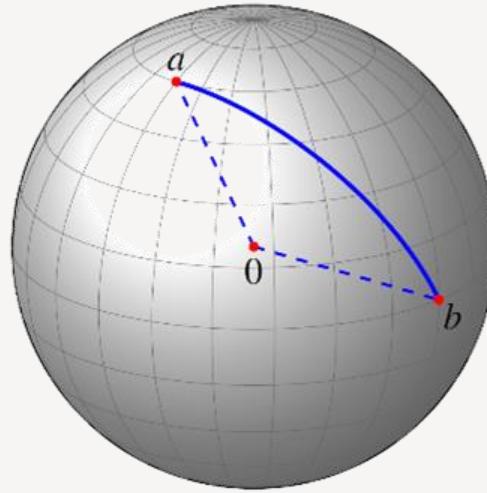
$$a^T b = \|a\| \|b\| \cos(\angle(a, b))$$

Coincides with ordinary angle between vectors in 2D and 3D

# Application

## Spherical distance:

- if  $a, b$  are on sphere with radius  $R$ , distance along the sphere is  $R \angle(a, b)$



# Resources

- ❑ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- ❑ Chapter 6: Linear Algebra David Cherney
- ❑ Linear Algebra and Optimization for Machine Learning
- ❑ Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares